

Tetrahedron Letters 41 (2000) 5887-5890

TETRAHEDRON LETTERS

Synthesis of actiketal, a glutarimide antibiotic

Hiromasa Kiyota,* Yuko Shimizu and Takayuki Oritani

Department of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agricultural Science, Tohoku University 1-1, Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan

Received 19 April 2000; revised 31 May 2000; accepted 2 June 2000

Abstract

The first synthesis of actiketal (RK-441S), an antibiotic from *Streptomyces pulveraceus* subsp. *epiderstagenes*, was achieved from 5,7-dimethylbenzofuran and dimethyl glutaconate via palladium-assisted coupling reaction as a key step. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: acetals; antibiotics; glutarimides; polyketides.

Actiketal (RK-441S, 1) was isolated from the culture extracts of *Streptomyces pulveraceus* subsp. *epiderstagenes* as a new acetal-type glutarimide antibiotic.¹ This compound inhibited the EGF-induced DNA formation in murine epithelial cell (100% at 1 μ M) and the Con A-induced blast formation in spleen cell (100% at 20 nM).² It also showed the inhibitory activity towards the incorporation of [³H]thymidine into epidermal growth factor-stimulated Balb/MK cells (IC₅₀ 14.5 μ M).¹ Although these activities are much weaker than those of cycloheximide (2), 1 is expected to be a new anti-cancer agent and an immnosuppressant because of its low cytotoxicity.^{1,2} To provide 1 in a sufficient quantity for further biological studies, we began the synthetic study and achieved the first total synthesis (Fig. 1).

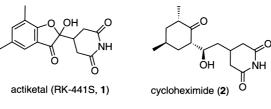
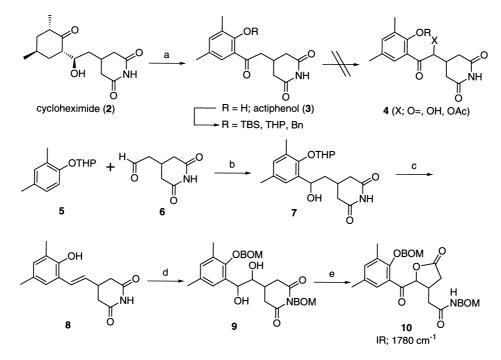
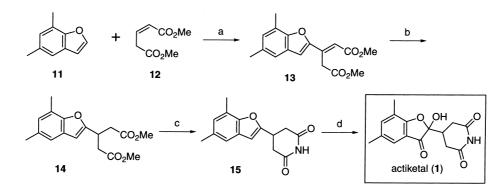



Figure 1.


^{*} Corresponding author. Tel/fax: +81-22-717-8783; e-mail: kiyota@biochem.tohoku.ac.jp

The natural actiketal (1) was reported to be optically inactive $\{[\alpha]_D^{26}\pm0^\circ (c\ 0.1,\ MeOH)\}^2$ and the asymmetric center of 1 is made up of a hemiacetal carbon. It could therefore be presumed that 1 occurs in the racemic form, so we started the synthetic study for the racemate. Firstly, we tried semi-synthesis of 1 from cycloheximide (2), which is well-known as a protein synthesis inhibitor and commercially available. As shown in Scheme 1, cycloheximide (2) was converted to actiphenol (3)³ according to Highet's procedure.³ However, the desired compound 4 could not be obtained: oxygenation of the α -position to keto carbonyl function failed in various conditions in the protected form of the phenolic hydroxy group. Next we examined the total synthesis. 2,4-Dimethylphenol THP ether (5) was coupled with glutarimide acetaldehyde (6)⁴ to give 7. Dehydration of 7 with acidic conditions afforded 8. Once the OH and NH groups of 8 had been protected with the BOM group, the double-bond was oxidized to give diol 9. This diol was unstable and the formation of undesired γ -lactone 10 predominated during the next oxidation step.

Scheme 1. Synthetic study of actiketal from cycloheximide. (a) NBS, CCl₄, reflux (10%). (b) *n*-BuLi, TMEDA, DME, THF, HMPA, -78 to 0°C (32%). (c) TsOH, toluene (85%). (d) i. BOMCl, *i*-Pr₂NEt. ii. OsO₄, NMO, *t*-BuOH (61%). (e) Dess–Martin periodinane

Consequently, the vicinal oxygen function must be introduced in the final step to prevent the γ -lactone formation. We thought that the corresponding benzofuran derivative would be a good precursor, so we chose 5,7-dimethylbenzofuran⁵ (11) and dimethyl glutaconate (12) as the starting materials, which would be coupled together by the key palladium-assisted reaction. As shown in Scheme 2, the oxidative coupling reaction⁶ of 11 and 12 mediated by 1 equiv. of Pd(OAc)₂ in AcOH proceeded successfully to give 13 in 57% yield. An attempt of the catalytic method [0.01 equiv. of Pd(OAc)₂ and 1 equiv. of PhCO₂t-Bu]⁷ resulted in the formation of a bibenzofuran derivative as the major product. The double-bond conjugated with

Scheme 2. Synthesis of actiketal (1). (a) 12 (1.4 equiv.), $Pd(OAc)_2$ (1 equiv.), AcOH, $60^{\circ}C$ (57%). (b) H_2 , Pd powder, EtOAc (98%). (c) i. KOH, MeOH. ii. Ac₂O, heat. iii. NH₃ gas, Et₂O. iv. NaOAc, Ac₂O, heat (62%). (d) OsO₄ (1.3 equiv.), Py, Et₂O, $20^{\circ}C$, then aq. NaHSO₃ 60°C (33%)

methoxycarbonyl group was selectively hydrogenated over Pd powder to afford 14 in 98% yield. Formation of glutarimide function was performed in the conventional manner, similar to that of Matsuda et al.⁸ to give the desired precursor 15. Finally, oxidation of the electron rich double bond with OsO_4 ,⁹ followed by hydrolysis of the resulting osmate with aq. NaHSO₃ at 60°C gave over-oxidated product,¹⁰ actiketal (1). ¹¹ The total yield was 11.4% in six steps. ¹H and ¹³C NMR data¹² were in good accordance with those reported.¹

In conclusion, the first synthesis of actiketal (RK-441S), an antibiotic from *Streptomyces pulveraceus* subsp. *epiderstagenes*, was achieved.

Acknowledgements

We thank Prof. Hiroyuki Osada (Riken Institute) for kindly sending us the copies of the ¹Hand ¹³C-NMR spectra of the natural actiketal.

References

- 1. Sonoda, T.; Osada, H.; Uzawa, J.; Isono, K. J. Antibiot. 1991, 44, 160-163.
- 2. Isono, K.; Osada, H.; Sonoda, T. Jpn Kokai Tokkyo Koho 1991, JP 03,255,082 (Chem. Abstr. 1992, 116, 126985).
- 3. Highet, R. J.; Prelog, V. Helv. Chim. Acta 1959, 42, 1523-1526.
- 4. Egawa, Y.; Suzuki, M.; Okuda, T. Chem. Pharm. Bull. 1963, 11, 589-596.
- 5. Stoermer, R.; Göhl, Fr. Chem. Ber. 1903, 36, 2873-2877.
- Kasahara, A.; Izumi, T.; Yodono, M.; Saito, R.; Takeda, T.; Sugawara, T. Bull. Chem. Soc. Jpn. 1973, 46, 1220– 1225.
- 7. Tsuji, J.; Nagashima, H. Tetrahedron 1984, 40, 2699-2702.
- 8. Matsuda, F.; Kawasaki, M.; Terashima, S. Tetrahedron Lett. 1985, 26, 4639-4642.
- 9. Ishii, H.; Ishikawa, T.; Takeda, S.; Ueki, S.; Suzuki, M. Chem. Pharm. Bull. 1992, 40, 1148-1153.
- According to Ref. 9, hydrolysis of the osmate derived from a benzofuran with aq. NaHSO₃ gave the diol, while that with aq. Na₂SO₃ gave the ketol. In our case, treatment with aq. Na₂SO₃ failed in decomposition of the product.
- 1: amorphous powder, mp 79.5–80.5°C (Ref. 1 96–100°C). The mixed melting point could not be measured because the natural sample was absent. However, the value of the synthetic product is reliable for its smaller melting range (Δ 1°C).

5890

¹H-NMR (500 MHz, CDCl₃, all protons and carbons were assigned according to Ref. 1) δ: 2.27 (s, 3H, 12-Me),
2.33 (s, 3H, 4-Me), 2.55 (dd, 1H, *J*=17, 10 Hz, 14-H), 2.66 (dd, 1H, *J*=17, 4 Hz, 14-H), 2.65–2.71 (m, 1H, 9-H),
2.75 (dd, 1H, *J*=17, 10 Hz, 10-H), 2.91 (dd, 1H, *J*=17, 4 Hz, 10-H), 4.42 (br, s, 1H, OH), 7.22 (s, 1H, 5-H), 7.33 (s, 1H, 3-H), 8.03 (s, 1H, NH). ¹³C-NMR (125 MHz, CDCl₃) δ: 14.1 (2-Me), 20.6 (4-Me), 30.9 (C-10), 31.5 (C-14),
35.7 (C-9), 103.2 (C-8), 118.2 (C-6), 121.6 (C-5), 123.1 (C-2), 132.7 (C-4), 142.0 (C-3), 167.5 (C-1), 171.3 (C-11),
171.6 (C-13), 198.6 (C-7). HR-FABMS (glycerol-PEG) *m/z* calcd for C₁₅H₁₆NO₅, 290.1029; found, 290.1029.